Will Amazonia Dry Out? Magnitude and Causes of Change from IPCC Climate Model Projections

نویسندگان

  • Brian Cook
  • Ning Zeng
  • Jin-Ho Yoon
چکیده

The Amazon rain forest may undergo significant change in response to future climate change. To determine the likelihood and causes of such changes, the authors analyzed the output of 24 models from the Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) and a dynamic vegetation model, Vegetation–Global–Atmosphere–Soil (VEGAS), driven by these climate output. Their results suggest that the core of the Amazon rain forest should remain largely stable because rainfall in the core of the basin is projected to increase in nearly all models. However, the * Corresponding author address: Ning Zeng, Department of Atmospheric and Oceanic Science, University of Maryland, College Park, College Park, MD 20742-2425. E-mail address: [email protected] Earth Interactions d Volume 16 (2012) d Paper No. 3 d Page 1 DOI: 10.1175/2011EI398.1 Copyright 2012, Paper 16-003; 67889 words, 13 Figures, 0 Animations, 2 Tables. http://EarthInteractions.org periphery, notably the southern edge of Amazonia and farther south into central Brazil (SAB), is in danger of drying out, driven by two main processes. First, a decline in precipitation of 11% during the southern Amazonia’s dry season (May–September) reduces soil moisture. Two dynamical mechanisms may explain the forecast reduction in dry season rainfall: 1) a general subtropical drying under global warming when the dry season southern Amazon basin is under the control of subtropical high pressure and 2) a stronger north–south tropical Atlantic sea surface temperature gradient and, to a lesser degree, a warmer eastern equatorial Pacific. The drying corresponds to a lengthening of the dry season by approximately 10 days. The decline in soil moisture occurs despite an increase in precipitation during the wet season, because of nonlinear responses in hydrology associated with the decline in dry season precipitation, ecosystem dynamics, and an increase in evaporative demand due to the general warming. In terms of ecosystem response, higher maintenance cost and reduced productivity under warming may also have additional adverse impact. Although the IPCC models have substantial intermodel variation in precipitation change, these latter two hydroecological effects are highly robust because of the general warming simulated by all models. As a result, when forced by these climate projections, a dynamic vegetation model VEGAS projects an enhancement of fire risk by 20%–30% in the SAB region. Fire danger reaches its peak in Amazonia during the dry season, and this danger is expected to increase primarily because of the reduction in soil moisture and the decrease in dry season rainfall. VEGAS also projects a reduction of about 0.77 in leaf area index (LAI) over the SAB region. The vegetation response may be partially mediated by the CO2 fertilization effect, because a sensitivity experiment without CO2 fertilization shows a higher 0.89 decrease in LAI. Southern Amazonia is currently under intense human influence as a result of deforestation and land-use change. Should this direct human impact continue at present rates, added pressure to the region’s ecosystems from climate change may subject the region to profound changes in the twenty-first century.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Potential effects of climate change on inundation patterns in the Amazon Basin

Floodplain forests, namely the Várzea and Igapó, cover an area of more than 97 000 km2. A key factor for their function and diversity is annual flooding. Increasing air temperature and higher precipitation variability caused by climate change are expected to shift the flooding regime during this century, and thereby impact floodplain ecosystems, their biodiversity and riverine ecosystem service...

متن کامل

Water Sustainability Program Student Fellowship

1. Introduction In dry desert regions like the Southwest U.S., natural and human systems are particularly sensitive to variations in climate. The natural ecosystem of the Sonoran Desert is largely dependent on and adapted to monsoon precipitation, which is also needed to maintain water demand and agriculture from year to year. From a resource management perspective, the monsoon is relevant in t...

متن کامل

Going to the Extremes an Intercomparison of Model-simulated Historical and Future Changes in Extreme Events

Projections of changes in climate extremes are critical to assessing the potential impacts of climate change on human and natural systems. Modeling advances now provide the opportunity of utilizing global general circulation models (GCMs) for projections of extreme temperature and precipitation indicators. We analyze historical and future simulations of ten such indicators as derived from an en...

متن کامل

Potential hydrologic changes in the Amazon by the end of the 21st century and the groundwater buffer

This study contributes to the discussions on the future of the Amazon rainforest under a projected warmer-drier climate from the perspectives of land hydrology. Using IPCC HadGEM2-ES simulations of the present and future Amazon climate to drive a land hydrology model that accounts for groundwater constraint on land drainage, we assess potential hydrologic changes in soil water, evapotranspirati...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012